0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сколько клапанов в цилиндре двигателя

Сколько клапанов в двигателе лучше: 8 или 16

Сегодня на автомобилях можно встретить различные типы ДВС, начиная от малообъемных 3-х цилиндровых агрегатов и заканчивая мощными V8 или V12. При этом подавляющее большинство авто под капотом имеют привычные моторы с 4 цилиндрами.

Если раньше такие силовые агрегаты ставились на модели начального и среднего класса, в данный момент 4-цилиндровый двигатель можно увидеть даже в премиальном сегменте.

Дело в том, что форсирование, увеличение количества клапанов на цилиндр, внедрение систем изменения фаз газораспределения, установка турбонаддува и другие усовершенствования позволили добиться от таких моторов необходимой мощности и эффективной отдачи.

Самым доступным решением для увеличения КПД оказалась конструкция, которая предполагает большее число клапанов на цилиндр. В самом простом варианте двигатели могут иметь 2 клапана (впускной и выпускной). В более технологичных версиях ГРМ получает 4 или 5 клапанов.

В этой статье мы поговорим о том, в чем заключается отличие 8 клапанного от 16 клапанного двигателя, а также какой двигатель лучше, 8 или 16 клапанный. Далее мы постараемся разобраться, какие преимущества и недостатки имеет большее или меньшее количество клапанов в моторе с учетом ремонта и обслуживания таких ДВС.

Для предварительной общей оценке показателя компрессии в цилиндрах бензинового двигателя необходимо соблюдать следующие условия:

  • прогрет до рабочей температуры;
  • свечи зажигания вывернуты из всех цилиндров;
  • отключена топливоподача (на инжекторных двигателях достаточно отключить датчик положения коленчатого вала, на карбюраторных — заглушить подачу топлива с бензонасоса);
  • аккумулятор полностью заряжен или дополнительно подключен к пусковому устройству;
  • стартер исправен;
  • педаль сцепления полностью нажата;
  • дроссельная заслонка полностью открыта;
  • режимы замера по всем цилиндрам одинаков по времени прокрутки стартером (или по количеству тактов).

Чем и как мерить компрессию?

Как уже было отмечено выше, замер компрессии – операция несложная, и ее запросто можно выполнить в гаражных условиях.

Но для этого понадобиться специальный измерительный прибор – компрессометр.

По сути, это обычный манометр, оснащенный обратным клапаном, а также удлинителем для удобства проведения диагностики (также в комплекте могут идти насадки для работы с разными силовыми установками).

Помимо этого, прибора потребуется также свечной ключ. Самостоятельно провести диагностику не удастся, поэтому нужен еще и помощник.

Как делаются замеры компрессии, рассмотрим на примере автомобиля ВАЗ «Калина».

Последовательность действий для проведения диагностики такова:

  1. Прогреваем двигатель до рабочей температуры;
  2. Сбрасываем давление в топливной рампе (вытаскиваем предохранитель бензонасоса, а затем снова заводим двигатель, чтобы он выработал остаточный в рампе бензин);
  3. Снимаем наконечники свечей зажигания, а также от модуля зажигания;
  4. Выкручиваем все свечи;
  5. Устанавливаем компрессометр в свечное отверстие цилиндра;
  6. Просим помощника выжать педаль газа до упора (обеспечит максимальную подачу воздуха в цилиндр, из-за чего показания будут точнее), а после включить стартер в работу. При этом для получения корректных данных нужно, чтобы в замеряемом цилиндре прошло все 4 такта, то есть нужно провернуть коленчатый вал минимум на 2 оборота;
  7. Поскольку компрессометр имеет обратный клапан, то на приборе зафиксируется максимальное значение давления в цилиндре;
  8. Записываем или запоминаем полученное значение давления, делаем сброс показаний и переходим к следующему цилиндру.

После проведения замеров во всех цилиндрах, сравниваем данные. Если разбежность в показаниях не превышает 1 кгс/см кв., ставим свечи на место и продолжаем эксплуатацию авто.

Устройство автомобилей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)

Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Преимущества 8V двигателей

Чтобы грамотно ответить на вопрос о том, какой двигатель лучше – 16-клапанный или 8, необходимо рассмотреть преимущества и недостатки. Начнем с плюсов, которыми обладает второй тип ДВС. Первое преимущество – это простота. Чем проще устроен агрегат, тем лучше для владельца. Конструкция традиционных моторов уже проверена временем. В системе имеется только один распределительный вал. На один цилиндр приходится два клапана.

Механических узлов немного, запчасти для двигателя легкодоступные и недорогие. Поэтому ремонт обойдется проще и дешевле. Отсутствие гидрокомпенсаторов – это также можно отнести к достоинствам. Этот факт делает конструкцию 8-ми клапанного агрегата еще более простым. Но конструкция предусматривает наличие механической толкателей, а это одновременно плюс и минус. Очень хорошо, что данный механизм устроен проще, чем гидрокомпенсаторы. Поэтому при необходимости узел можно легко заменить или отремонтировать.

И еще – на данные ДВС устанавливают поршни, которые при обрыве ремня ГРМ не встретятся с клапанами. Это большой плюс, особенно если учесть, что после такого нужен капремонт двигателя. Цена такого «удовольствия» составляет 35-40 тыс. рублей. Также к преимуществам можно отнести «всеядность» агрегата. Он практически не имеет требований по маслам и отлично переваривает полусинтетику. Нетребователен двигатель и к топливу (естественно в разумных пределах). Он будет нормально работать даже на бензине сорта А92.

Здесь же можно отметить и стоимость владения. Ремонт обойдется сравнительно не дорого, а запчасти для двигателя найти не составит труда, если дело касается моторов АвтоВАЗа. Еще среди плюсов можно выделить компактные размеры. Распределительный вал один, соответственно, верхняя часть меньше, чем в 16-клапаном варианте. В случае ремонта гораздо легче добираться до генератора, стартера и другого оборудования. С этим согласятся те, кто ставил 16-клапанный двигатель на классику.

Все причины низкой компрессии

Если вы столкнулись с потерей компрессии или ее просадкой в одном из цилиндров, точную причину стоит искать следующим образом.

Сверху за герметичность камеры сгорания отвечают клапана, но снижение компрессии может быть не только из-за утечек в паре тарелка клапана/седло клапана. Отложения смолистых веществ на клапанах могут снижать площадь впускного канала (дополнительное сопротивление впуску), или даже препятствовать полному закрытию клапана. Появление отложений на клапане и нарушение его прилегания к седлу приводят к ухудшению теплоотвода (тепло от клапана рассеивается через седло, к которому он прилегает) и, в последствии, к прогоранию клапана. Но клапан может прогореть еще и из-за уменьшения теплового зазора: в этом случае при прогреве двигателя клапан перестанет нормально прилегать к седлу. Образовавшаяся кольцевая щель между тарелкой клапана и его седлом снижает компрессию. Через эту щель прорываются раскаленные газы и сжигают тонкую кромку тарелки, что еще больше снижает компрессию. Двигатель теряет мощность, а тарелка клапана сгорает.

Неправильно выставленные фазы газораспределения могут быть причиной снижения компрессии вследствие несвоевременного открытия/закрытия клапанов. Эта проблема влияет на все цилиндры одинаково, т.е. на перепадов компрессии между цилиндрами не будет обнаружено.

Некоторые современные двигатели регулируют подачу воздух в цилиндры не привычной для нас дроссельной заслонкой, а высотой/фазами подъема впускных клапанов (Valvetronic у BMW, MultiAir у Fiat и проч.). Теоретически при неисправностях системы регулировки подъемов клапанов компрессия так же может снижаться, т.к. подъем клапанов при замере может быть не полным. Влияние этой неисправности на все цилиндры будет одинаково, если неисправность постоянная. Однако если неисправность носит плавающий характер, замер компрессии будет показывать каждый раз новые данные, и судить о неисправности конкретного цилиндра по компрессии в этом случае опрометчиво. Причиной могут быть как неисправность управления электроклапаном регулирования фаз газораспределения выпускных клапанов, так и сбои датчика.

Снизу за герметичность камеры сгорания отвечают элементы цилиндропоршневой группы. К снижению компрессии приводит износ и как следствие увеличение зазоров в ЦПГ, что также сопровождается увеличенным пропуском газов в картер. Такие же последствия дает изменение геометрии (деформация поршня или цилиндра) по причине перегрева двигателя, залегание колец, задиры на зеркале цилиндра, сломанное компрессионное кольцо. Прогоревший поршень в первую очередь проявляет себя посторонними шумами при работе двигателя, и лишь затем снижением компрессии в цилиндре.

Отдельно выделим прогар прокладки головки блока цилиндров. Эту неисправность можно дополнительно проверить, создав давление в цилиндре при закрытых клапанах (допустим компрессором), и понаблюдав за появлением пузырьков в расширительном бачке системы охлаждения, либо услышав шум в соседнем цилиндре.

Что понимают под компрессией?

Одна из основных характеристик двигателя, приведенная в инструкции по эксплуатации автомобиля, – степень сжатия. Это безразмерный коэффициент, показывающий, во сколько раз сжимается топливовоздушная смесь перед воспламенением. Рассчитывается так: объем одного цилиндра (с учетом камеры сгорания) делится на величину хода поршня. Данный параметр является постоянным и меняется только при глубоком тюнинге мотора – расточке цилиндров, установке другого коленвала и так далее.

Степень сжатия несведущие автолюбители путают с компрессией – реальным давлением, создаваемым поршнями при вращении коленчатого вала стартером (200–300 об/мин). Характеристика меняется по мере износа деталей и измеряется в таких единицах:

  • Атм (атмосфера);
  • кгс/см 2 (килограмм-сила на сантиметр) = 0,97 Атм;
  • МПа (мегапаскаль) = 9,9 Атм;
  • Бар = 0,99 Атм.

Чтобы выявить неисправность главных элементов двигателя, нужно померить компрессию во всех цилиндрах и сопоставить полученные значения с оптимальной величиной. Почему в процессе эксплуатации мотора компрессия снижается:

  1. Рабочие поверхности колец, поршней и цилиндров истираются, зазор между ними увеличивается. Когда коленвал крутится стартером, поршень не успевает «накачать» давление в камере сгорания – часть воздуха уходит через щели в картер.
  2. Тарелки клапанов постепенно подгорают, неплотно садятся в седло и пропускают газы.
  3. «Подвисший» клапан либо полностью прогоревший поршень не позволяет создать давление в цилиндре.
  4. Царапины и задиры на цилиндрах также ведут к утечкам газов.

Указанные процессы аналогично протекают во время работы мотора: топливо не догорает, газы проникают в картер, а масло – в камеру сжигания. То есть, величина компрессии отражает реальную картину внутри двигателя.

Сколько клапанов в двигателе? Разберем редкие случаи

Как то мне стало интересно, а сколько клапанов бывает в двигателе внутреннего сгорания. Ведь сейчас на рынке преобладают в основном версии с 8 и 16 клапанами. НО неужели никто и никогда не делал больше или наоборот меньше? Какие еще варианты были и почему они не пошли в массовое производство? Собственно об этом и пойдет сегодняшняя речь, как обычно будет интересно + полезное видео. Так что читаем – смотрим …

СОДЕРЖАНИЕ СТАТЬИ

В этом материале мы будет говорить именно про четырехтактный мотор, про двухтактные это немного другая тема. Стоит отметить, что вся система ГРМ (газо-распределительного механизма), очень важна для мотора. Кто и как только с ней не «игрался» чтобы увеличить ее работоспособность, но почему то сейчас пиком эволюции моторостроения считается вариант именно с 16-ю клапанами. В этом материале я вам расскажу про типы силовых агрегатов у которых было различное количество клапанов, и почему же они все были сняты с производства и не дошли до наших дней. ТО есть материал скажем познавательный, но он вам ответит на вопрос – «так, сколько же» и «почему»?



Нормы компрессии

Для определения критической изношенности цилиндро-поршневой группы нужно сверять стандартный показатель с имеющейся величиной. Естественно, идеальным он не может быть, тем более, на моторах со старым устройством. Различают 3 приемлемых значений, при которых работа движка считается удовлетворительной:

  • для старых карбюраторных моторов с низкой степенью сжатия — до 9,9 атмосфер;
  • для инжекторов — 10,8 атмосфер;
  • для дизелей — до 29.7 атмосфер.

Такой разброс значений легко объяснить разностью степени сжатия. На старых силовых агрегатах она априори низкая — редко превышает 8,5 единиц. На DIESEL этот показатель, наоборот, высокий из-за малых размеров камеры сгорания — доходит до 24 единиц. И только на современных бензиновых инжекторных моторах компрессия равна 9 или максимум 11 единицам.

Принято считать, что компрессия прямо связана со степенью сжатия. Если знать последнюю величину, которая всегда представлена в технических документах на автомобиль, определить компрессию не составит труда. Достаточно умножить коэффициент сжатия на 1,4 или 1,5. Но желательно всё-таки использовать те значения, которые приведены в официальных источниках.

На двигателе Ваз-2106 показатель компрессии равен 11 кгс/см 2 , а на уже на Ваз-2110 — 13 кгс/см 2 . Дизельный BHDA или BHDB, устанавливаемый на Ford Focus, отличается более высоким значением — 18 кгс/см 2 . На Mitsubishi ASX с движками 1.6, 1.8 и 2.0 литра, этот показатель варьируется в пределах 12-13 кгс/см 2 .

Как определить порядок работы цилиндров

Разные версии однотипных ДВС могут работать по разным схемам. К примеру, ЗМЗ-402 мотор работает следующим образом – 1-2-4-3. А вот ЗМЗ-406 имеет другой порядок – 1-3-4-2.

Шестицилиндровые моторы с рядным расположением работают по такой схеме – 1-5-3-6-2-4.

Порядок работы восьмицилиндрового двигателя будет следующим – 1-5-4-8-6-3-7-2.

Тема обширная, поэтому обязательно поделись своим опытом или мнением в комментария ниже.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector