1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Эпк 02 схема подключения

Схема управления магнитным пускателем с двух и трех мест

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

После публикации статьи про схему подключения магнитного пускателя мне очень часто стали приходить вопросы о том, как осуществить управление двигателем с двух или трех мест.

И не удивительно, ведь такая необходимость может возникнуть довольно часто, например, при управлении двигателем из двух разных помещений или в одном большом помещении, но с противоположных сторон или на разных уровнях высот, и т.п.

Вот я и решил написать об этом отдельную статью, чтобы вновь обратившимся с подобным вопросом каждый раз не объяснять, что и куда необходимо подключить, а просто давать ссылочку на эту статью, где все подробно разъяснено.

Итак, у нас имеется трехфазный электродвигатель, управляемый через контактор с помощью одного кнопочного поста. Как собрать подобную схему я очень подробно и досконально объяснял в статье про схему подключения магнитного пускателя — переходите по ссылочке и знакомьтесь.

Вот схема подключения магнитного пускателя через один кнопочный пост для приведенного выше примера:

Вот монтажный вариант этой схемы.

Будьте внимательны! Если у Вас линейное (межфазное) напряжение трехфазной цепи составляет не 220 (В), как в моем примере, а 380 (В), то схема будет выглядеть аналогично, только катушка пускателя должна быть на 380 (В), иначе она сгорит.

Также цепи управления можно подключить не с двух фаз, а с одной, т.е. использовать какую-нибудь одну фазу и ноль. В таком случае катушка контактора должна иметь номинал 220 (В).

Схема управления двигателем с двух мест

Я немного изменил предыдущую схему, установив для силовых цепей и цепей управления отдельные автоматические выключатели.

Для моего примера с маломощным двигателем это не было критической ошибкой, но если у Вас двигатель гораздо бОльшей мощности, то такой вариант будет не рациональным и в некоторых случаях даже не осуществимым, т.к. сечение проводов для цепей управления в таком случае должно быть равно сечению проводов силовых цепей.

Предположим, что силовые цепи и цепи управления подключены к одному автомату с номинальным током 32 (А). В таком случае они должны быть одного сечения, т.е. не менее 6 кв.мм по меди. А какой смысл для цепей управления использовать такое сечение?! Токи потребления там совсем мизерные (катушка, сигнальные лампы и т.п.).

А если двигатель будет защищен автоматом с номинальным током 100 (А)? Представьте тогда, какие сечения проводов необходимо будет применить для цепей управления. Да они просто напросто не влезут под клеммы катушек, кнопок, ламп и прочих устройств низковольтной автоматики.

Поэтому, гораздо правильнее будет — это установить отдельный автомат для цепей управления, например, 10 (А) и применить для монтажа цепей управления провода сечением не менее 1,5 кв.мм.

Теперь нам нужно в эту схему добавить еще один кнопочный пост управления. Возьму для примера пост ПКЕ 212-2У3 с двумя кнопками.

Как видите, в этом посту все кнопки имеют черный цвет. Я все же рекомендую для управления применять кнопочные посты, в которых одна из кнопок выделена красным цветом. Ей и присваивать обозначение «Стоп». Вот пример такого же поста ПКЕ 212-2У3, только с красной и черной кнопками. Согласитесь, что выглядит гораздо нагляднее.

Вся суть изменения схемы сводится к тому, что кнопки «Стоп» обоих кнопочных постов нам необходимо подключить последовательно, а кнопки «Пуск» («Вперед») параллельно.

Назовем кнопки у поста №1 «Пуск-1» и «Стоп-1», а у поста №2 — «Пуск-2» и «Стоп-2».

Теперь с клеммы (3) нормально-закрытого контакта кнопки «Стоп-1» (пост №1) делаем перемычку на клемму (4) нормально-закрытого контакта кнопки «Стоп-2» (пост №2).

Затем с клеммы (3) нормально-закрытого контакта кнопки «Стоп-2» (пост №2) делаем две перемычки. Одну перемычку на клемму (2) нормально-открытого контакта кнопки «Пуск-1» (пост №1).

А вторую перемычку на клемму (2) нормально-открытого контакта кнопки «Пуск-2» (пост №2).

И теперь осталось сделать еще одну перемычку с клеммы (1) нормально-открытого контакта кнопки «Пуск-2» (пост №2) на клемму (1) нормально-открытого контакта кнопки «Пуск-1» (пост №1). Таким образом мы подключили кнопки «Пуск-1» и «Пуск-2» параллельно друг другу.

Вот собранная схема и ее монтажный вариант.

Теперь управлять катушкой контактора, а также самим двигателем можно с любого ближайшего для Вас поста. Например, включить двигатель можно с поста №1, а отключить с поста №2, и наоборот.

О том, как собрать схему управления двигателем с двух мест и принцип ее работы предлагаю посмотреть в моем видеоролике:

Ошибки, которые могут возникнуть при подключении

Если перепутать, и подключить кнопки «Стоп» не последовательно друг с другом, а параллельно, то запустить двигатель можно будет с любого поста, а вот остановить его уже на вряд ли, т.к. в этом случае необходимо будет нажимать сразу обе кнопки «Стоп».

И наоборот, если кнопки «Стоп» собрать правильно (последовательно), а кнопки «Пуск» последовательно, то двигатель запустить не получится, т.к. в этом случае для запуска нужно будет нажимать одновременно две кнопки «Пуск».

Схема управления двигателем с трех мест

Если же Вам необходимо управлять двигателем с трех мест, то в схему добавится еще один кнопочный пост. А далее все аналогично: все три кнопки «Стоп» необходимо подключить последовательно, а все три кнопки «Пуск» параллельно друг другу.

Монтажный вариант схемы.

Если же Вам необходимо осуществлять реверсивный пуск асинхронного двигателя с нескольких мест, то смысл остается прежним, только в схему добавится, помимо кнопок «Стоп» и «Пуск» («Вперед»), еще одна кнопка «Назад», которую необходимо будет подключить параллельно кнопке «Назад» другого поста управления.

Рекомендую: на постах управления, помимо кнопок, выполнять световую индикацию наличия напряжения цепей управления («Сеть») и состояние двигателя («Движение вперед» и «Движение назад»), например, с помощью тех же светодиодных ламп СКЛ, про преимущества и недостатки которых я не так давно Вам подробно рассказывал. Примерно вот так это будет выглядеть. Согласитесь, что смотрится наглядно и интуитивно понятно, особенно когда двигатель и контактор находятся далеко от постов управления.

Как Вы уже догадались, количество кнопочных постов не ограничивается двумя или тремя, и управление двигателем можно осуществлять и с бОльшего числа мест — это все зависит от конкретных требований и условий рабочего места.

Кстати, вместо двигателя можно подключить любую нагрузку, например, освещение, но об этом я расскажу Вам в следующих своих статьях.

Что это за датчик и когда используется

Электроконтактный манометр — это датчик, который применяется для измерения избыточного и вакуумметрического давлений в разных средах (жидкость, газ, пар), используется в качестве сигнализирующего устройства прямого действия и позволяет управлять производственными процессами, при этом особым условием к среде является исключение ее кристаллизации.

ЭКМ применяется для выдачи сигналов управления исполнительным механизмам, которые поддерживают значения давления в трубопроводе, а также компрессорных установках, гидросистемах, пневмооборудованиях или бытовых автоклавах на определённом значении.

Электроконтактный манометр пользуется популярностью во многих отраслях промышленности и инфраструктурных системах:

  • Энергетика;
  • Металлургия;
  • Нефтегазовая и нефтехимическая промышленность;
  • Системы водоснабжения;
  • Машиностроительные установки;
  • Генерация тепла и его распределение.

Также ЭКМ востребованы в системах автоматики безопасности ТЭЦ, ЦТП и котельных.

Разновидности моделей датчиков

Производством электроконтактных манометров занимается немало производителей, некоторые предлагают достаточно широкую линейку моделей, приведенный ниже перечень разделен согласно различным заводам-изготовителям:

  • ТМ (ТВ, ТМВ), 10-ой серии;
  • PGS23.100, PGS23.160;
  • ЭКМ100Вм, ЭКМ160Вм;
  • ТМ-510Р.05, ТМ-510Р.06, ДМ2005Сг и ее аналог ТМ-610.05 РОСМА.

Все перечисленные модели делятся на манометры с микровыключателями и с магнитомеханическими контактами. Также производители выпускают приборы во взрывозащищенном исполнении и виброустойчивые или жидконаполненные (внутри заполнены диэлектрическим маслом, чаще всего глицерином) чтобы показания стрелки манометра «не скакали» при повышенной пульсации измеряемой среды. Глицерин внутри ЭКМ не даст стрелке быстро перемещаться.

Принцип работы электроконтактных манометров

Принцип работы ЭКМ заключается в замыкании или размыкании подвижным контактом некого уставочного значения. Подвижным контактом электроконтактного манометра является показывающая давление стрелка, которая поворачивается при изменении давления в измеряемой среде. Уставочное (регулируемое) значение выставляется вручную с помощью двух стрелок (минимальное и максимальное значение). Эти стрелки манометра после установки значений неподвижны.

Значение подвижной стрелки в рабочем процессе, как правило, находится между двумя уставочными, но при пересечении ей предельного значения происходит замыкание либо размыкание контактов внутренней электрической цепи (зависит от типа исполнения модели). Данные контакты можно использовать в различных релейных схемах для управления, например, пневматическими или электромагнитными клапанами, а также магнитными пускателями различных двигателей.

Обратите внимание! Коммутационная способность контактов электроконтактного манометра не позволяет коммутировать большие токи нагрузки.

На каждом электроконтактном манометре нанесена маркировка, которая описывает все его характеристики и разновидность.

Кнопка «Пуск».

Как правило, кнопку «Пуск» раскрашивают в черный или зеленый цвета.
В кнопке используется замыкающий (нормально разомкнутый) контакт, при замыкании которого через кнопку начинает проходить электрический ток.

Кнопка «Пуск» устроена так же, как и кнопка «Стоп», и отличается лишь только тем, что в начальном положении ее подвижный контакт не замыкает неподвижные контакты — то есть всегда находится в не замкнутом состоянии. В левой части рисунка видно, что подвижный контакт не замкнут и пружиной поддавливается вверх.

При нажатии на кнопку подвижный контакт опускается и замыкает оба неподвижных контакта. Когда же кнопка отпускается, то ее подвижный контакт под действием пружины возвращается в исходное верхнее положение и контакты размыкаются.

А можно ли в принципе использовать ваше реле давление с вашим насосом?

Реле давления подключается не только к электричеству, но и к воде. Для водяного подключения служит гайка, которая жестко прикреплена к реле. Это значит, что привинчивая реле давления к насосу, придется крутить само реле. Таким образом, первым делом прикиньте, есть ли у вас на насосе возможность крутить это самое реле по часовой стрелке? Поместится ли оно? Не упрется ли в другие трубы или сам корпус насоса?

Будем считать, что этот вопрос решен положительно, поскольку иначе нужно уже смотреть на месте и, например, озаботиться каким-нибудь удлинителем или чем-нибудь подобным.

У реле давления вход воды не совсем стандартный по диаметру. У большинства бытовых реле это четверть дюйма. У профессиональных реле диаметр подключения может быть больше. Этим вопросом нужно обязательно озаботиться и, если надо, купить латунный переходник на нужный диаметр.

Раньше при производстве автоматических насосных станций использовалась специальная и вполне стандартная деталь, называемая в простонародье елочкой. Это такой симпатичный отрезок латунной трубы сантиметров 10 или 12 длиной и диаметром 1 дюйм. Елочка одним концом накручивается на выходной патрубок насоса и имеет стандартные «выходы» для подключения манометра, реле давления, бака аквааккумулятора и собственно водяной магистрали. Сейчас все стало на много сложнее. Бывают насосы, где реле давления вкручивается прямо на насос или в очень неподходящие, с первого взгляда, места. Такое разнообразие довольно усложняет мою работу по написанию подробной инструкции.

Инструкция по подключению комплекта автономной СКД

Содержание:

1. Описание комплекта СКД для офиса с электромагнитным или электроригельным замком для уличной установки

Автономный комплект СКД для офиса с электромагнитным или электроригельным замком для уличной установки — это бюджетный, но надежный и простой в установке и подключении вариант для предоставления доступа в помещение только авторизированным пользователям. Предотвращает проникновение нежелательных посетителей в помещение без карты (брелока) или кода доступа. Пользователи этих карт вносятся в базу автономного контроллера доступа Trinix TRK-1000EМН со встроенным считывателем с помощью специальных Мастер-карт, которые идут в комплекте, что предоставляет возможность авторизированного прохода для 600 пользователей.

К этому контролеру можно подключить любой электрозамок (электрозащелку, электроригельный, электромагнитный, электромеханический), который подходит для ограничения входа в помещение. Такие замки могут быть нормально открытого типа – это означает что в случае отключения питания замки будут всегда открытыми в соответствии с требованиями пожарной безопасности; и нормально закрытого типа – это значит, что в случае отключения питания замок останется закрытым.

Для выхода из помещения подключается накладная кнопка выхода Yli Electronic PBK-815, которая изготовлена из алюминия и будет служить на протяжении длительного периода времени, она имеет ресурс 500 000 нажатий.

Питание всех устройств осуществляется потоком постоянного тока DC 12V — 24V, который подается через импульсный блок питания Green Vision GV-SAS-C 12V5A (60W).

2. Подключение питания к устройствам

Распакуйте все комплектующие, проверьте целостность всех устройств и деталей, ознакомьтесь внимательно с инструкцией. В начале соберите всю схему на столе, чтобы проверить работоспособность системы и ее элементов.

Подключите контроллер Trinix TRK-1000EМН к блоку питания Green Vision GV-SAS-C 12V5A (60W). Красный провод (DC +) от контроллера зажмите в разъем-power под зажим (мама) в соответствующий разъем «+», а черный (GND -) в соответствующий разъем «-». Так же подсоедините фиолетовый контакт контроллера (общий контакт реле) перемычкой с соответствующим разъемом «-» в разъем-power под зажим (мама).

Подключите блок питания Green Vision GV-SAS-C 12V5A (60W) к электроригельному замку ELECTRONIC YB-100+ или к электромагнитному замку Kraft Locks KRF-300 LED: красный провод (DC +) от замка зажмите в разъем-power под зажим (мама) в соответствующий разъем «+», а черный (GND -) в соответствующий разъем «-».

3. Схема подключения СКД с электромагнитным замком без управляющих контактов

Для схемы подключения СКД с электромагнитным замком без управляющих контактов подключение будет иметь такой вид: черный провод магнитного замка (GND -) подсоединить к оранжевому контакту контроллера (relay NC), а красный провод к DC +. При нажатии на кнопку выхода или при считывании ключа, реле переключится и питание к замку прекратится на 5 секунд (стандартная настройка), что даст возможность открыть двери. (рис.1)

Рис.1 Схема подключения СКД с электромагнитным замком без управляющих контактов.

4. Схема подключения СКД с электромагнитным замком с управляющими контактами

Соедините контроллер с электромагнитным замком Kraft Locks KRF-300 LED или электроригельным замком YLI ELECTRONIC YB-100+.

Как указанно в схеме подключения электромагнитного замка Kraft Locks KRF-300 LED соедините управляющие контакты: белый провод IN + соедините перемычкой с красным проводом питания (DC +), а серый контакт электромагнитного замка (IN –) соедините с управляющим контактом контроллера синего цвета (релейный контакт для открытия NО). (рис.2)

Рис.2 Схема подключения СКД с электромагнитным замком с управляющими контактами

5. Схема подключения СКД с электроригельным замком

Оранжевый контакт (открытие) электроригельного замка YLI ELECTRONIC YB-100+ нужно соединить с синим контактом контроллера (Реле NO), он будет замыкать контакт для открытия замка при считывании карты пользователя или введения кода. Фиолетовый контакт контроллера (Реле СОМ) нужно соединить с белым контактом (СОМ) замка YLI ELECTRONIC YB-100+. (Рис.3)

Рис. 3 Схема подключения СКД с электроригельным замком

6. Подключение кнопки выхода

Кнопка выхода подключается к контроллеру одним контактом желтого цвета (Open), второй контакт кнопки (СОМ) нужно подсоединить к фиолетовому контакту контроллера (Реле СОМ) который соединен с контактом «-» в разъеме-power под зажим (мама). Таким образом при нажатии кнопки выхода, дверь будет открыта на определенный промежуток времени.

7. Подключение звонка (для контроллера TRK-800WA)

Звонок дополнительно подключается двумя розовыми контактами, которые есть в контроллере TRK-800WA.

8. Программирование карточек пользователей

Запрограммируйте карточки и коды для прохода в помещение с помощью Мастер Карты. Включите питание контроллера, считайте Мастер Карту, затем по очереди поднесите пользовательские карточки, когда все карты добавлены еще раз считайте Мастер Карту.

Для входа в режим программирования введите на клавиатуре Мастер Код (по умолчанию это *123456#) световой индикатор должен загореться оранжевым цветом. Для установки нового Мастер кода нажмите «0» затем введите придуманный вами Мастер код, нажмите «#», повторите новый Мастер код и снова нажмите «#». Для выхода из меню программирования нажмите «*».

При поднесении карточки к считывателю контроллера, сработает релейный контакт и откроет замок на запрограммированное время, что даст возможность открыть двери и войти в помещение.

Установите все элементы автономного комплекта СКД на места их крепления.

Схема буз для электромеханического замка

По вопросам ремонта и другим техническим вопросам сюда. Ремонт бытовой и офисной техники.

Вечный БУЗ — накопитель для электро замка домофона. Краснодар Кубань.

Вечный БУЗ. Уточните цену на этом сайте. artradiolab.ru

Сейчас домофоны уже не редкость, а удобство и необходимость, Да и по цене уже не кусаются. Но в электрических замках домофонов и не только, есть одна, часто выходящая со строя деталь. Это БУЗ — блок управления замком, или накопитель энергии.

Дело в том, что электрозамки открываются фиксированной защелкой, совмещенной с электромагнитом. Этой защелке чтобы сработать и зафиксироваться в открытом положении необходим только короткий импульс достаточной мощности, а не длительная подача постоянного напряжения. Это как раз и делает БУЗ.

БУЗ, или накопитель для электро замка домофона формирует одиночный короткий импульс для открытия защелки. Это одновибратор, или формирователь одиночного короткого импульса фиксированной длительности. Для создания необходимого запаса энергии в нем применены накопительные электролитические конденсаторы большой емкости. Резкий разряд еонденсаторов обеспечивает рабочую энергию необходимую для втягивания штока электромагнита.

Буз — накопитель является самой ненадежной деталью электрозамка. Раз — два — три за год его приходится менять, а стоит он 7-9 долларов, при чем цена колебается не от надежности, а от производителя. Что не есть хорошо.

Чтобы каждый раз не платить по 9 долларов, выкладываю схему Буза — накопителя, который не будет гореть.

За 3 года установок, еще ни один ни БУЗ сгорел.

Схема 100 процентов рабочая, резисторы желательно ставить такие как указано на схеме, достаточно 0,125 ваттных. Транзисторы любые комплементарные — составные.

Схема вечный БУЗ — накопитель для электро замка домофона.

Спасибо за внимание.

С ув. Белецкий А. И. 10.04.2015г. Кубань Краснодар.

Мощность электродвигателя бетономешалки

Подобные бетономешалки оснащаются электродвигателем мощностью около 1000Вт, скорость вращения ротора электродвигателя без передаточного соединения с редуктором, — составляет примерно 2800 об.мин.

Скорость вращения барабана бетономешалки составляет около 27 об.мин., — то есть скорость вращения ротора электродвигателя преобразовывается через передаточный механизм редуктора бетономешалки.

Электродвигатель для бетономешалки СБР-100, СБР-120

Неисправности бетономешалки

К основным причинам неисправностей бетономешалки можно отнести:

  • перегорание обмоток статора электродвигателя;
  • пробой обкладок конденсатора;
  • неисправность выключателя;
  • разрыв провода в сетевом кабеле;
  • разрыв в контактном соединении провода с выключателем;
  • разрыв провода в контактном соединении со штепсельной вилкой

и другие причины.

Замена электродвигателяи его подключение

Начнем с того, что обмотка статора асинхронного однофазного электродвигателя состоит из:

  • пусковой обмотки;
  • рабочей обмотки.

Как определить, где пусковая обмотка статора электродвигателя по выведенным наружу проводам и где рабочая обмотка статора?

— Это тоже является одной из основ при подключении электродвигателя.

В пусковой обмотке статора электродвигателя, — значение сопротивления будет больше, чем у рабочей обмотки статора электродвигателя.

Так к примеру в пусковой обмотке при измерении, сопротивление будет 30 — 35 ом, в рабочей обмотке значение сопротивления будет составлять 10 — 13 ом.

Типы электродвигателей применяемые в бетономешалках, — относятся к асинхронным электрическим машинам , как их иначе принято называть в разделе науки по электротехнике.

Выпускаемые модели — различные от разных производителей такой продукции. Цифровое обозначение допустим такой модели бетономешалки как СБР-120, означает допустимую емкость приготовления жидкого раствора, то есть данная бетономешалка рассчитана на допустимое перемешивание, приготовление бетонного раствора емкостью — 120 литров.

Итак, к примеру мы столкнулись с такой проблемой, — в бетономешалке вышел из строя электродвигатель. В этом случае мы можем заменить электродвигатель на новый либо отдать в ремонт электродвигатель для устранения его неисправностей и установить этот же самый электродвигатель.

Устранение неисправности электродвигателя — такой как перемотка обмоток статора электродвигателя, занятие трудоемкое и практически в домашних условиях не выполнимо. Здесь необходимо учитывать:

  • количество витков медной проволоки для каждой обмотки статора электродвигателя;
  • сечение медной проволоки.

Чаще всего такие работы по перемотке статора электродвигателя — выполняются отдельными специалистами по этой специализации.

Как самому подключить электродвигатель при его замене? — Это и является одной из основ в изложенной теме. Ведь при неправильном подключении электродвигателя — труды будут напрасны, электродвигатель опять же может перегореть.

Схемы подключения трехфазных электродвигателей

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Схема буз для электромеханического замка

По вопросам ремонта и другим техническим вопросам сюда. Ремонт бытовой и офисной техники.

Вечный БУЗ — накопитель для электро замка домофона. Краснодар Кубань.

Вечный БУЗ. Уточните цену на этом сайте. artradiolab.ru

Сейчас домофоны уже не редкость, а удобство и необходимость, Да и по цене уже не кусаются. Но в электрических замках домофонов и не только, есть одна, часто выходящая со строя деталь. Это БУЗ — блок управления замком, или накопитель энергии.

Дело в том, что электрозамки открываются фиксированной защелкой, совмещенной с электромагнитом. Этой защелке чтобы сработать и зафиксироваться в открытом положении необходим только короткий импульс достаточной мощности, а не длительная подача постоянного напряжения. Это как раз и делает БУЗ.

БУЗ, или накопитель для электро замка домофона формирует одиночный короткий импульс для открытия защелки. Это одновибратор, или формирователь одиночного короткого импульса фиксированной длительности. Для создания необходимого запаса энергии в нем применены накопительные электролитические конденсаторы большой емкости. Резкий разряд еонденсаторов обеспечивает рабочую энергию необходимую для втягивания штока электромагнита.

Буз — накопитель является самой ненадежной деталью электрозамка. Раз — два — три за год его приходится менять, а стоит он 7-9 долларов, при чем цена колебается не от надежности, а от производителя. Что не есть хорошо.

Чтобы каждый раз не платить по 9 долларов, выкладываю схему Буза — накопителя, который не будет гореть.

За 3 года установок, еще ни один ни БУЗ сгорел.

Схема 100 процентов рабочая, резисторы желательно ставить такие как указано на схеме, достаточно 0,125 ваттных. Транзисторы любые комплементарные — составные.

Схема вечный БУЗ — накопитель для электро замка домофона.

Спасибо за внимание.

С ув. Белецкий А. И. 10.04.2015г. Кубань Краснодар.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector